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NASA TTF-10, 370

FORMULATION OF SOLUTIONS FOR LINEAR DIFFERENTIAL EQUATIONS
WITH QUASTIPERIODIC COEFFICIENTS BY MEANS OF THE
ACCELERATED CONVERGENCE METHOD

Yu. A. Mitropol'skiy, A. M. Samoylenko

ABSTRACT

The systew of n differential equations
dx . .
It =[A+P(wt)]x where A is a constant matrix,
and P(wt) is a matrix having n basic frequen-
cies is investigated. For the solution, a
correction matrix, £, is introduced and the
solution is obtained in the form x=®(wt)eAtxo

where ¢ is a periodic matrix of period 2.

1. Let us investigate a system of differential equations 142%
Z——x={A+P(mt)Jx, (1.1)
¢
where A is constant, P(wt) -- the quasiperiodic n-dimensional matrix,
W= (W1, Woy eoees wm) -- the basic frequencies of the matrix P(wt),
X = (X1, «es, X;) -- n-dimensional vector, t -- time. In additionm,

let us assume that the matrix P(wt) is small.

As is known, N. A. Artemyeva (Ref. 1), N. P. Yerugina (Ref. 9),
I. Z. Shtokalo (Ref. 12), A. N. Kolmogorova (Ref. 10), E. G. Begagi
(Ref. 5), A. Ye. Gel'mana (Ref. 7-8), L. Ya. Adrianovoy (Ref. 3),
Yu. A. Mitropol'skogo (Ref. 11), I. N. Blinova (Ref. 6), et al have
studied the problem of formulating the solutions for and the reduction
of equations such as (1.1), and also those having a more general form.
It consists of reducing system (1.1) to a system of differential equa-
tions with constant coefficients. The latter is a problem which has
not been entirely solved up to the present time.

This article will investigate the problem of determining a solu-
tion of the system (1.1) by compiling the reduction matrix. The

* Numbers given in the margin indicate pagination in the original
foreign text.



Newtonian type of accelerated convergence method is employed to compile
the reduction matrix; this method was developed and applied with great
success in the studies of N. A. Kolmogorov (Ref. 10), V. I. Arnol'd
(Ref. 2), and N. N. Bogolyubov (Ref. 4).

Just as in the study (Ref. 11), it is advantageous to introduce
the correction £ = &5 (i, j = 1, 2, ..., n) in the system of equations
(1.1), and to investigate the following system of differential equations
instead of it:
dx

o= APl E) 48y, (1.2)

where A + £ = B, A is the matrix of a linear system of differential equa-

tions with constant coefficients, which we may obtain after transformation
of the system of equations (1.1), P(¢, £) —-- the matrix which is periodic

with respect to ¢ = (¢1, ..., ¢m) with the period 2w and which is analytic
with respect to the complex arguments ¢,£ in the region

[Imp| <o, |E]| <o,

) n (1.3)
Bl="Y Ig,1.
l‘./’=ly
Let us pose the following problem: Let us find the transforma- /43
tion which is analytical with respect to ¢
x=0{)y (=01, (1.4)

where ¢(¢) is the matrix which is geriodic with respect to ¢ having the
period 2w, and let us find £ = E(” , so that system (1.2) may be reduced
to a linear system with constant coefficients in the case of § = E(“

d_t=Ay' 1.5)

Then, integrating system (1.5), we may obtain the general solution of
system (1.2) in the form

x = O (wf)e™x,. (1.6)

The solution of this problem exists due to the results obtained in
(Ref. 11). However, in our opinion it is of interest to perform a more
detailed computation in the case under comnsideration of equation (1.2),
due to the fact that the reduction of equations with quasi-
periodic coefficients is a pressing problem. We shall employ the solu-
tion of the problem to solve not only the question of the reduction of
system (1.2), but also to clarify the form of the solution for this
system and to provide a method for compiling the reduction matrix &¢(wt)



2. Before proceeding with the proof of the basic theorems for
system (1.2), let us discuss the derivation of certain quantities
which are necessary later on.

Let us employ A, ..., A to designate the eigen values of the
matrix A, and let us assume that the following inequality is fulfilled
for certain constants € > 0, d > 0

Ay — A+ i(ko)| > e k] G,i=1,....n) (2.1)
for any integral vectors k = (ky, ..., ky), where (kw) = kjw; + ... +

+k_o |k1.—.—2]ki|, i=)—I.

m m’
j=t

We shall show that when condition (2.1) is fulfilled, the equa-

tion
[(r)Yy =AY, =Y, A+ P,
(2.2)
where
‘2,1‘! 2n 1
Pp= e\ ... | P(e)e g, k>0,
<= G ) f(q)) (2.3)
. 0 0

may be solved for Y, in the case of |k| > 0, and the following relationship
is valid for Yy

1Yol <colk[™| P, | (2.4)

in which ¢p, d; (d; > d) are certain positive comstants which do not
depend on k.

In order to obtain the relation (2.4), let us write the matrix A
in the form

A= UJU™, { (2.5)

where J is the matrix in the Jordan form which may be written as follows

(2.6)
= {Jo, A1)y - v o (M)},
where
JQ,' ) = A'iEQ/ + ZQ/v
2.7)
Epj-—-ej ~dimensional wunit matrix, Zej———ej ~dimensional matrix, /44



the subdiagonal of which consists of ones, and all the remaining elements
consist of zeros:

; 0, a#p
E =5m={ ' 9.8
o ab l, a=8 (a,ﬁ:l,.'..,gi)‘. ( )

I, f=a—1 (a=2,...,0) (2.9)

Substituting according to (2.5) the value of A in equation (2.2),
we obtain
i(kw)Y, =UJUTY,,—Y UIU™ 4 P,

or

(ko) UTY WU 4 UTY UJ =J.U7'Y U+ U™ PU. (2.10)

Let t B
et us se Uy U=X, UPU=Q

(2.11)
and then equation (2.10) may be written in the following form
iko) X + X0 =JX +Q. (2.12)
Let us now partition the matrices X and Q into blocks:
X::{XW%L Q::{wa% (2.13)
where Xbmﬂ wa (jir=1,....5] are the matrices having pj rows and e

columns.

Equation (2.12) may be broken down into a system of independent
equations

(ko) Xy, + Koo o O0) = Jg B Xy, 1 Q Gor=1,....0.

o,
R (2.14)
Let us employ xg”,qgﬂ «1==1,,,_,%)j to designate the vectors
W= A=), (2.15)

which are the a-rows of the matrices X , Q .
e lr

Taking the notation in (2.7) into account, we may write the system
(2.14) in the following form



K (b~ D - i (R0)) = x4, = qUm, (2.16)

where x{?=0,a=1 ...,0, j,r=1,...,1

According to the condition (2.1), it is apparent that system (2.16)
may be solved. The solution for it has the following form

o ‘ (2.17)
= 2, ) 6, =y
where YA
i R — b § (kD)) = 1 { . or
o " e =y + L (0) = e Eo = Sy T
- ZOr-“ .
+...+(-1)Q, 1 Qy O’—l}. (2.18)
(;»r - }\‘I + l(k(l)))
Let us now find the relationship for expressions (2.17).
According to (2.18) and (2.9), we have
00| < 1 gt { 0, e, —1
l i) 145 J!A,—-}\,/-)—i(k(o)]+l7»,-7»/+i(k‘9)12+
S ! |
RETATIG £

or, taking into account condition (2.1), we have

|7 <1 Tl e kMo, — 1) + ..+ £ £, |
y (2.19)

. k| '

[xfl’)l<c‘—-——] al, lg¢"], [

where c; is a constant which does not depend on k or ¢.

Taking the inequality (2.19) into account, we may find the following
for a = 2, 3, ..., e from (2.17)
lk‘cxofd

80-0'

|| <[ |+ -+ [ag7 N es (2.20)

After this, taking into account (2.13), we obtain the following relation-
ship for X:



&

2,21
X <c adl/delv ¢ )

where
d, =max g, max g,-d,

Gt i<

¢y is a positive constant which depends neither on k or on €.

Turning from F and Q to Y, and Py, respectively, according to
formulas (2.11) we obtain the inequality

. ‘ i i ,kldl. (2.22)
z‘/kﬁ.<lUrlU Ic2sd‘/dipiz:'
Setting in (2.22) |
rri2yp—142 Co
C0=;[j£ }U IW” | (2.23)

we obtain the desired inequality (2.4).
Let us now compile the following series from the solution of equa-

tions (2.2)
Yo =) Y,

%0

(2.24)

Differentiating it, we find that Y(¢) is the formal solution of equation

g—g—m+YA=AY—{—P((p)—F(_@, | (2.25)
where
L 1 2:& 2
P@)=P,= mS...s‘P(w)dw.
(2m) 5 ] (2.26)

3. The iteration process with accelerated convergence will be em-
ployed to compile the reduction matrix ¢(¢), which -~ in view of the
transformation (1.4) -- changes the system of equations (1.2) into a
system (1.5) which may be integrated. Let us write the sth (s > 1)
step of this process. For this purpose, let us employ Mg_j, 85-1,
€5-1 to designate the constants by means of which we shall characterize
the s - 12 iteration, and let us employ Mg, S8y, @5 to designate the
constants by means of which we shall characterize the sth iteration.



The change from the s - 1th jteration to the st jteration may be

characterized as follows.

Theorem 1. Let us set for the system of equations

d
F=A+IP@®Y +Ex,

(3.1
de
Z?-:m ((0=((l)1,...,(l)m))‘
A, & are the n-dimensional constant matrices, P(¢, &) -- the n-dimen-

stonal matrix which is periodic with respect to ¢ = (1, «uey b)) having
the period 27, and analytical with respect to the complex arguments
¢, & in the region

mel<e., lsl<M_, | (3.2)

and which satisfies the inequality

P, 8| <M _,. (3.3)

In addition, the eigen values of the matrix A satisfy the inequality
(2.1).

For a sufficiently small mg and any s » 1, we have the transforma-
tion

¥= LY (@ )] x,

E=EG), (3.4)

which is periodic with respect to ¢ having the period 2r, and analytical
with respect to ¢, & in the region

rmel<e, g |<M_, | (3.5)
which reduces the system of equations (3.1) to the following form

dx,
o =AX1+[P1((P’ gl) + gl]xlr

e
[ 22

(3.6)

where &, is a constant matrixz, and P1(¢, &1) is a matrix which is
periodic with respect to ¢ having the period 2w; these matrices are
analytical with respect to ¢,& in the region (3.5), so that in the

/46



region (3.5) the following inequalities are valid

[P, &) | < M, (3.7)
M3 .
Y@ e <= JEE) —§ <M, (3.8)

Thus, the constants Mg, Sg, g are related to the constants Mg_1, 8g_1,
®s-1 by the following relationships

3.9
M,=ML, &=v5_, o=gq_ —2,_, “>D,1 (3.9)
where
Q o —
4+Qo‘ b =Y Q= M_ =o. (3.10)

—1

Proof. Let us first reduce the system (3.1) to the form (3.6).
For this purpose, let us select the transformation of the coordinates
in the form
x=(E+Y (@ 8lxn (3.11) /47
where Y(¢, &) is the solution of equation (2.25).

Substituting (3.11) in equation (3.1) and taking (2.25) into account,
we obtain the following system of equations:

dxl 1 « -~ YN
2 =A + P (@) +E+ P Blx,,
dt ‘ : e (3.12)
dm__
@ e
where we set ay . . - . = |
PP@ 8 =E+NTIP-+)Y —Y P+
(3.13)

Let us define the transformation £ = £(&;) as the solution of the
equation

§+ P8 =8 (3.14)

Then the substitution of the variables (3.11) and (3.14) reduces the
initial equation (3.1) to our desired form



dx £
ﬁ = Ax; + [P, (@, E)) + Ea) x4,
g—?.—.—(ﬂ,
=

where
- (1) 1
P1 (CP, g]) = P; ((P' E\Sl)) (3.15)
Let us first examine equation (3.14). According to the condition
of the theorem, the matrix P(¢, £) is the analytical function of

g = (Eae), (o, B=1, ..., n) and satisfies the following inequality
in the region (3.2)

1P@.9l<M (3.16)

s=—1"
It follows from the properties of the analytical functions of (3.2) and
(3.16) that in the region

1§1<M_;__3 (3.17)

the following inequality is valid

y

a,B=1

oP (@, &y | _2M _n* 2y gt o 1
s ‘< M., M <g (3.18)

from which it follows that equatioms (3.15) may be solved and § = £(&;)
is the analytical function of &; in the region

151 <M

s—1’

and in this region we have the following inequality according to (3.15)
and (3.16)

« jw Ms—2
e <2M, < —2
(3.18")

[EE)—& <M _,.

Let us derive one relation for &. Differentiating the equation

EE)+P@EG) =8,

we have /48



1, k=i, g=j,

0%, _i_zdp((p, g %S _ _
05 0% 0E) {o. ki or g

~eih)
Ysu a.B

Taking (3.18) into account, we find

13 ={1)

abka ngq VLYY X agka

e | = PR T s—2 mka 5e

Sij if 7| Ysy

or, performing summation over i, j, we obtain
g% ‘
iy 1 -
T SL+4n'M7) <2. (3.19)

max <

ba L 0B | 1 —20"M[T)
it

Let us now determine the matrix Y (¢,£) included in the formula for

the substitution of the wvariables (3.11).
and the notation of (2.24), we have the following

According to (2.4)

inequality
(3.20)

Y@ 8] < ¥ [Velle®| <cp ¥ A1 Pu (@)
k) +0 JE[£0

for all ¢, & from the region (3.5). However, the function P(¢,&) is

Therefore, the following

analytical and confined in the region (3.2).
relationship is valid for its Fourier coefficients Py (&)

[P (8] < M,_ e %,
If we take this into account, we obtain the following inequality for

Y (4,8 |
1, 16y, (i Gl=—s—1)Ik|
Y (@, 8)} <M, lklgolﬂn e v (3.21)
It follows from (3.21) for |Im¢| < e,
- L — d\4 (1 + &7
IY((P, g) l <COMS_1 Z lkld 2 2051141 < CO (_;_) ,(_g}_;nl_ Ms—-l =
et - (3.22)
d 4, 2—% x—1 M‘}(—-l
1 . m s—1 w—i s—1 5—1
=, (7) (1 —re) WMS_l <—8‘r<'—"‘4n .
(3.8) have

as soon as My is sufficiently small. Thus, all the relations

10



been substantiated.

The analytical nature of the function Y (¢, £(&;)) with respect
to £; in the region |£;| < M,_; follows from the analytical nature

of the function P(9,E(£1)), taking (2.24) into account. Its analytical

nature with respect to ¢ in the region |Im¢|~s e follows from

oY (g, &) i L) Al —20g_
_a_cp—_l<Zlyk“kleQH<CoMs_x>_‘kadﬂe s—1lkl o
[k} #0 |k|+0
d,+ 1\ mw M i
< g p A+e)" e <M.
Y

*

s(dg+m—-1)

Let us now turn to the relationship for (3.15). We have

[P @ &) =P (@ EENI<SIEE+Y (@ 8)~" | x

XUP@ O +EE) Y @ +1Y @ 95 (3.23)

Therefore, taking the inequalities (3.3), (3.18') and (3.22) into account,
we obtain )
M 1\ M 1

« 1 S 5—
12, @ %) <Z( = ) M <l < m,,

k=0

which concludes the proof for thecrem 1.

4, Let us now apply the preceding theorem to construct the itera-
tion process with accelerated convergence for system (1.2), which would
successively increase the smallness of the function P (¢, &) and would
simultaneously provide an explicit expression for the reduction matrix

o(4).

We shall assume
x=[E + U (¢, &) £,
o 4.1)
E=E5E")

where U(l) (¢,8) =Y (¢,8) is determined from equation (2.25) and satis-
fies the inequalities (3.8) in the case of s = 1.

In this case, x(l), ¢ will satisfy equations

11

149



dx® 0
— ) «pli) i Loell),
= = A 1P (0, B 5 1,

(4.2)

Let us again apply the transformation (which corresponds to this

new system) according to theorem 1 to equatioms (4.2).
we obtain

e 7D e, 2
= IE U G, 5

As a result,

g\i) - §“) (5(2)). (lh 3)
where U(2) (¢,g(1)) -~ the solution for an equation such as (2.5),
accordingly compiled for systems (4.2), and x(2), ¢ -- a solution of
the system of equations:
L (D) )
G = A+ 1P (@, B - E0a?,
(4.4)
de
a‘ = .
Continuing this process, at the sth step we obtain
(s—1) ___ . (s) & ($~—1) (s)
X = [E - U y & X,
@ ) (4.5)
E(S—U — ré(s"'l)(g(s))‘
where x(s), ¢ satisfy the equations
dx(S) ( s s
= AT F 1PV @, 8 4+ E, (4.6)
de
d—t =,

The continuation of the iteration process for all s > 1 is pro-

vided by the choice of parameters (3.9) and by the statements of

theorem 1. Therefore, let us employ the relationship of theorem 1 to

prove the convergence of this process.

Let us first express x, & by x(8) and E(S). According to the

formulas for the substitution of variables (4.1), (4.3), (4.5),

we have
x=[E+ U@ 8@ ...[E + U (g, 25 &) £,

=z ... &Y,

12

(4.7)

150



Taking the fact into account that E(j) (g(j+l)) = E(j) (E(j+1) oo (6(8))),
we may find the expression for x and £ in teyms of x(8) and E(S):
o !

x= ﬁ [E + U (@, 897 @) £,
jemel (4.8)

E=EtE"... &™),

while in (4.8) the product of the matrices must be taken in the order
determined by formula (4.7).

Let us first investigate the sequence
BOE) =" @) s=1.2...). (4.9)

Since g(j)(g(j+1)) for 0 £ j & s -1 is the solution of equation

£ @) 5 PO (g, 20 (@) o gl (4.10)
in which |P(j)(¢,£(j))L§ M;, taking (3.19) into account, we may write
)
Z ag(g}—i-n <1+ 4rr12/\/1;‘:2l (4.11)
aB aB

for Ig(j+l)| < M.. However, in view of the relationship (3.18') it
follows from inequality IE(S)I < Mg_; that

5— s M
lg( 1)(§( )H <2Ms—1 < 5—2.

i . M
lg(l)(g(/-i-l). . (g( )))l <2MI <

|

2 " |
from which we may conclude that in the case of |£(S)| < Ms—l inequality

(4.11) remains in force for g(j) = E(j)(i(j+l)...(£(s))).

Therefore, differentiating (4.9), we obtain the relationship
'

9B® (&) 2 w1 25 i 2y
E_agT S+ 4% 7Y (1 + 4 M2 (1 + 4’MET) <
a.pB af v

. (4.12)
<2[Ja+ 4 <o,

j=0

13



after which we may write
|B57(0) — B (0)| = | B (£ (0) = BY ()| < ¢, | EHOY| < eM_,.

‘ (4.13)
!
Employing (4.13), we may find the relationship
il .
| B () — B Q)< e, ¥ M, <M, (4.14)
i)
according to which the uniform convergence of the matrix B(S)(O) is
apparent: /51
B (0) > £ for s > oo, (4.15)
while

v(co)__ (s) »n—1
3 BYO)|<eM_ < M. (4.16)

Let us now turn to the proof of the uniform convergence of the se-
quence

(@ &) = [TIE+ 0@ &7 ... (4.17)
. =1
First of all, we shall show that the sequences E(j)(...(i(s-l)(O)))
(=0, %, «e., 8=1) converge uniformly in the case of s»>~. By defini-
tion, g(J)(g(J+l)) is the solution of the equation

. ——————e 0) (o0
g(l" 1) «(f) ! P(/) ((P- ‘—(1)) (g( —_ )).

41 Y {41 , 7 PTRTESY
g(l ) g(l (S(H- )) + pi (e, g(l) ,\S()—r\)))

holds identically, from which we obtain

BT =g LT O) + PP e, BV L BT (4.18)

Since (V... @ V() » & in view of (4.15), going to the limit
S=p O

in (4.18), we obtain

14



B =ImEEP L TN O) = £+ P (0,8,

( ety el 42 1 e 7
3 = lim g’I 1\g(l+ ) (E(S )(0))) (I) P(l) ((P, (I) ,

and the following inequalities are retained for Eéj)

} °(/)I<2M <M2

and the following equation holds

g(/) (E(I"H) (0)) — gé}).

(4.19)

(4.20)

(4.21)

Assuming that E(S) = Eés) in (4.17) and taking (4.21) into account, we

find that

7@ 8" = TTIE+U" @, &7,
j=al
Taking the fact into account that
K—l

(UM (@, 81 < ==&

we obtain

!cb(s-i-l) ((P °(s-.-l) q)(s) ((P: EE)S))I < |¢(s) ((P, E(OS)) ” U(s) ((P. E(ns-n\l <

l s

[1(z+250)

j=i

1‘/1:—__‘1 n = . /My ' x—l _ n—1
4n <:7r1_1<1 a 4 )Adsx <M

=1

<

where I is the matrix, all of whose members equal unity.

Employing (4.24), we find the relatiomnship

|5+ (g EWM & (@, B | < VAQH,<CM“'

s—i?

(4.22)

(4.23)

(4.24)

(4.25)

according to which the uniform convergence of Q(S)(¢,£§s)) is apparent:

D (@, &) > @ (@) £01 s - oo,

(4.26)

15



while

(s) =(8) pvc—
“Z) ((P' 0) (P)[ s—1°* (4.27)

The functions Q(S)(¢,£§S)) are analytical functions of ¢ for

|Im¢| < O, and consequently #(¢) is the analytical function of ¢ for

fhﬂq4<;%——2‘jé-—g“, We shall show that the matrix ¢(¢) is not degen-

s==0

erate. According to (4.22) and (4.23), the following inequality holds

e e —El= | [ [E+ 0@ 8 —El <

=1

<M:._: M:c_—-l.\ (A/I;:—l MT—l | | M:"’_—l A/{:‘_:l \\ ;
<\ T )T T T T Ta +
7 —_— -_— V=i 7
g Y F T L
! —_ . LI . ld /l 1.
LR e v R 1\ }Lli\ ll <<l
j=i i |

from which it follows that

[ P@)—E|< < 1. (4.28)

When (4.28) is fulfilled, the series EZ(E-—«ﬁ«mY converges and

/=9

determines the matrix which is the inverse of ¢(¢):

2 (E—@®) ={E—(E—®) "' =07 (4.29)

This indicates that ®(¢) is a nondegenerate matrix.

Summing up the results obtained above, let us turn to the following
theorem.

Theorem 2. Let the matrix P(¢,8) be periodic with respect to
¢ = (¢1, +v., ) with the period 2m and analytic with respect to
¢, & = {gyg) (0) B =1, ..., n) in the region

me| <o, [E5l=YIi4l<0 (4.30)
a'ﬂ
In addition, X1, ..., Ay are the eigen values of the matrix A. /

16



Let us assume that the following inequality is fulfilled for cer-
tain € > 0, d > 0

| Ay — M +i(ko)| > e| kT

(4.31)
for all integral vectors k = (ky, ..., ky), where
hi=1...,n (ko) = ko, + ...+ ko, k=Y |k
' =
It is then possible to take a small enough positive constant
My = Mo(e,d) and the matrix &, |E] < 2MF™ (1 <:x<:21 so that for
|P(p, B < M, (4.32)
. d i
the system of equations E;==Ax-%|P(@,§)+—gjx,
(4.33)
% _ 4
with substitution of the variables dt
x=P{)y (4.34)

with the matrix @(¢) which is periodic with respect to ¢ of the period
an, which is also analytiec and has an analytical inverse matrix in the
region

- Q

me] <= (4.35)
may be reduced to the following form

. dp
d_t_Ay' 7= ; (4.36)

Thus, the matrix ©(¢) may be represented in the form of the product

= 0 (4.37)
¢y = TEFUDG.
where fi
U(f) ((P) — Z Yﬁl)ei(kw. (4 . 38)

f#] 0
Yéj) 18 the solution of the equation

i (k0)YY = AV — YA + I, | (4.39)
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2n 21

in which PQ)==(2nY”"S...5 PO (@)e~ g, ... de, are the Fourier co-

0 0 A
efficients of the function P(J)(¢), which is determined by the rela-

tionships
P — [E 4 U= (pU=Ig — gwpiDy, |

i Jj=1

2n 2t |
PO=P@B+E P=@07" (.. (P @de, ... do, (4.40)
6 9 ‘
and satisfies the inequality /54
@@ —TTE+ v (@)ll <eMpeT (4.41)

5. Let us now turn to the inequality

|A —di+ i (ko) > e ] k| (5.1)

The following relationship is a necessary condition for its fulfill-
ment:

| (k)| > e k[ (5.2)
Condition (5.2) is sufficient for matrices A with real eigen values. The
result of theorem 2 may be intensified for systems with these matrices.

Namely, the following theorem is applicable.

Theorem 3. Let P(¢) be a matrix which is periodic with respect to
¢ = (d15 «.0s ¢y) with the period 21 and analytic in the region

me|<g, (5.3)

In addition, let us assume that the eigen values of the matrix A are real
and different.

Let us assume that for certain ¢ > 0, d > 0 the following inequality
18 fulfilled

[l > ek (5.4)
for all integral vectors k = (ky, ..., kp).

It is then possible to take a small enough positive constant My so
that for .
[P <M,

(5.5)

18



the system of equations
dx
"dT=Ax+P({P)x)
dp (5.6)

with substitution of the variables

x=®@)y .7
with the matrix $(¢) which is periodic with respect to ¢ of the period
2n, and which is analytic and has an analytical inverse matrix in the
region

lIm(p]<% (5.8)

may be reduced to the following form
& ey, 0 (5.9)

In addition, the matrices 8(¢) and A? may be represented in the
following form

P (@) = [[(E+ U @),
=i | (5.10)

AO = X Hj—l)(@) + A'
i=i

where . -
U(/)((P) — E Yf{’e‘“‘“’),
iivo (5.11)
Yéj) i8 the solution of the equation /55
' ) el S . X =Y _ |
i (ko) Y = lA + ¥ P (@)} Y9 — vl [A+ ZOP,W ((P)} +PTN 510y
a=0 Q=

' 2 - . : .
in which PV = (2::)""‘5‘ S PO (@ e g .. dy,, PV (=Pl are the Fourier
0 [¢]

coefficients of the funetion P(j)(¢), which is determined by relation-
ships

19



7y __ (=1  pl—=Ny 1) () pli—1)
PN = (E 4 U™ [pi=Dy  yipi—b), (5.13)
P = P(g);
We thus have?* s . (et yS—1
|¢@%4T@+U“@4<Z%'“ .
=1
Y po @)! < 2M¥. (5.14)

j=s

Proof.
this connections.

Lemma. Let us assume that

matrix A are real and different.

of matrices A which satisfy the

First of all, let us establish one set of matrices with
real and different eigen values.

We shall prove the following lemma in

the eigen values Al, evvs Ay Of the
Let us employ §,' to desagnate the set
inequality

i<r. (5.15)

—A| = S?
We may then take r = ro(Ay, ..., A,) > 0 in such a way that all the
matrices A of U, have real and different eigen values.

Actually, let us enclose Ay, ..., A in nonintersecting segments

I, .y In, which have their centers at the points Aj, o An,
respectively.
£ (A)=det | A-AE|

The function / continuously represents each of the segments I

in the segment f(Ij) = (Ej’ M), where _ﬂ_l,=r;16ilrl}f(7~), E,=;?§IX}°(M . Thfxs,
since Aj # Ay, for j # r, we then have
m <0, m>0. (5.16)
Let us investigate the function
(5.17)

f, (&) =det| A 4+ rA, — LE],

* The reduction of a system like (5.6) is proven on the basis of

these same assumptions in studies by L. Ya. Adrianova (Ref. 3)
and I. N, Blinov (Ref. 6). However, it is proven by another method.
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where A; is any matrix for which |A1| < 1.

The function f£.(}) continuously represents each of the segments

I; in the segment fr(Ij) = [mj (), ifj (r)], where

m(ry=minf (&),  m(r) =max [ (
& e f, @) i) rgg? f, ().
In addition, the function f.(1) is a continuous function of r. There-

fore, for Ag/; the following relationship holds uniformly with respect
to A

from which the existence of ry > 0 follows, such that -- with allowance

for (5.16) -- for r < ry we have /56
m(ry< 0,  m(r)>0. (5.19)

Inequalities (5.19) indicate that the points M=), ..., M=), ...,

o = An(r) are found in the segments I;, ..., I,, such that
fra)=0 for j=1, ..., n (5.20)

The wvalues )‘j’ j=1, ..., n, are real and different, and moreover they

A—A l

are the eigen values of the matrix A= 4 + 1, =A +rA1‘= which is

Q
the arbitrary matrix of 9, . This fact proves the validity of the lemma.

We should also point out that for any matrix A of QI,P we may
always select the matrix U which reduces A to the Jordan form J:

A= GG~ (5.21)
so that the following inequality is fulfilled
oo <6, (5.22)
in which ¢ is a constant, which is general for all matrices of 9, .
Let us now study the equation
(ko) Y v = ALY+ PIY (k) = 0), (5.23)

where A,

-1 is the arbitrary matrix of 9 .
e

21



In view of the statements presented in § 2, equation (5.23)
always has a solution, such that

Y < g el PET (5.24)

where ¢, =7¢’cc” ¢ (, 4  are constants determined according to (2.23).

Let us assume that the matrix P(j)(¢) is periodic with respect to
¢ with the period 27, and analytic in the region

feo) (5.25)

I <o (=0, I
and satisfies the inequality
'v"r_)(/') (q))/ < A'VI"", (5.26)

where Oj, Mj are the constants which are connected by the relationships

(3.9). Taking the inequality (5.24) into account, we may then write

Y < ey kMgt (5.27)

k]

2; 25 |

as soon as Py—h = (2m)—m Sﬂ v ‘3 PU=D (@) e=iko)dgp,. . . dgp .
+, . m ‘
J :

o |
It follows from (5.27) that the matrix
U (¢) = 2 Y Weitko) (5.28)
k] =0 &

is the solution of equation

)
oU w04 =A UL pi—1 __Ppi—n (5.30)
L0 ' =1 i=1 i d

which is analytic in the region

[lmg] < (5.29)
and which satisfies the inequality /57
U0 ()] < 2=l (5.31)

4n

Let us now turn to the direct proof of theorem 3. For this purpose, let
us make the following substitution of the variables in system (5.6)

22



x = [E + UM (g)] x0, (5.32)
setting j = 1, Ay = A, P(0) = P in (5.23).

The substitution (5.32) reduces system (5.6) to the following form

dxth do
7 = At 4 PO () b, _E(f_ = o, (5.33)
1
where we have
=~ |
Ar=A+P{g), PO =(E+UDTPUD—UDP]. | (5.34)

The matrix P(l)(¢) is analytic in the region

Imq| <gq
and satisfies the inequality
Wo?\ [ agn—l \y “—i
1P (@) < Lk-—%—) Q;MO-i:n——<m = M. (5.35)

(5.36)

where rp is determined by the lemma. When (5.36) is fulfilled, the matrix
A, belongs to the set %, , since

A =P oY < M, <r,. (5.37)

We may therefore make the following substitution of the variables in
_system (5.33)

Cx) = [E - U ()] x® (5.38)

and may turn to the system

dx® Y iy (5.39)
. ,(2) A W2) {2) —_— .
T = A.x? 1 PO () x4, o=

where we have

ho= 4y P = A+ PR PG,

P@ (g) = (E 4 U@y—1 (POU@ — JPOY, ! (5.40)
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Thus, P(Z)(¢) is the analytic function of ¢ in the region
mq] <o, (5.41)
which satisfies the inequality
[P (@) < My, (5.42)
and A, is the matrix of 9,

Continuing the process given above, we may state that the substitu-
tion of the variables /58
2= [11E + Ud (@) x¥ = DB () x (5.43)

j=1 |

reduces the initial system of equations (5.6) to the following form

dx(s) o do \ (5.44)
= (s) () (o) s(s) i — ;
P A — P (@) i), 7 o,

where

=]
A=Y PO(9) + 4,

=0

) (5.45)
P — (E ~ U(s)) (P(S—I)U(s)__ U(s)m;

Thus, Q(S) and P(S) are the analytic functions of ¢ in the region

[im @] < g (5.46)

which satisfy the inequalities

4—« / AqH—I H=—1
D R I B SRl ; 2 I 1 . M f
‘qb (‘-.D):<§i 1\E v —*4,1 1>l<n l(l—r“‘} ), 1 (5.47)

when A is the matrix of 2z, .
It follows from (5.47) that
P (G) > D (@) for 5> oo (5.48)
uniformly with respect to ¢ for the region

&
5 -

lImo| < (5.49)

Therefore, the substitution of
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s=o@y=[1E+00@y | 30
j=1 \
reduces the initial system of equations (5.6) to the form
T N (5.51)
dr Y~ ’
! where
AY — | Y i)
A+ Y P (9). (5.52)

/=0

The relationships (5.14) readily follow from (5.47), which completes
the proof for the theorem.

In conclusion, we would like to point out that theorem 3 remains in
force for periodic systems (¢ is a scalar), if the condition that the
eigen values of the matrix A are real and different is replaced by the
condition

Ay — Ay 4 ik # 0 (5.53)

i in the case of j, 2 =1, 2, ..., n; k=1, 2, ...
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